引力透镜对光线偏折的角度,取决于透镜天体的质量。如果透镜天体的质量不够大,比如只是一颗恒星,情况会怎样?这便是能帮助天文学家找到行星的微引力透镜效应。
计算显示,恒星质量的透镜天体产生的爱因斯坦环非常小,即使最先进的望远镜也无法分辨它。人们看到的,不过是因为微引力透镜效应变得更亮一点的背景天体。而且微引力透镜形成的像不过存在最多几年时间,相比引力透镜像动辄上百万年的存在时间,可谓转瞬即逝。
虽然观测困难,天文学家却发现微引力透镜在寻找地外行星方面可以大显身手。当恒星质量级天体从背景天体前通过时,微引力透镜会让背景天体在短暂的时间内看起来更亮,反映在光度变化曲线上是一个凸起的波峰。但如果观测到的光度变化曲线上出现不止一个波峰,那么说明恒星的附近还有其他小质量天体,比如行星。利用这种特征,可以判断地外行星的存在,分析它的质量以及与恒星距离等参数,即使望远镜中从没出现过这颗行星。
如果把微引力透镜比作一台望远镜,它的优势非常明显,比如让人们得以探索更遥远的行星世界。2003年,两个研究小组第一次用这种办法找到了地外行星,距离地球16000光年。在最新的发现中,天文学家创新性地使用了微引力透镜方法,把人类寻找行星的范围,延展到银河系外。
简单说来,在最新研究中,天文学家综合利用了引力透镜与微引力透镜效应来寻找行星——星系的引力透镜效应使后方背景天体形成了多个虚像,星系中的恒星和行星产生的微引力透镜效应,使这些虚像的光度和谱线频率发生着变化。观测和模拟结果显示,在距离地球38亿光年的RX J1131-1231星系中央,栖息着一群行星,质量介于月球和木星质量之间。用微引力透镜造成的这台“望远镜”,精度超过地球上以及天空中精度最高的观测仪器,让人类首次在其他星系找到行星存在的证据。