和 R 可组成一个恰当的无量纲量 。这样,可得偏折角的公式 ,f 是一个形式未知的函数。函数 f 必是一个关于变量的正相关函数, 越大,它应该越大。其次,有类似边界条件 ,意思是无引力就无偏折。对于很小的偏折,近似地有 。现在只剩下一个需要确定的比例系数 α 了。可以看到,前述索尔德纳假设光是重物的计算,得到的结果对应 α=2 。
对引力偏折光线的相对论计算,爱因斯坦 1911年是基于等价原理的计算,即基于均匀引力场和加速度等价的观念进行的计算(图2),结果与索尔德纳同。这篇文章爱因斯坦承认是因为对自己四年前关于这个问题的文章 (见Jahrbuch für Radioaktivit?t und Elektronik, 4, 1907)不满意才旧话重提的。后来,等广义相对论构造出来,爱因斯坦又基于广义相对论重新计算,结果是在原来的结果上加上一个2倍的修正因子。爱因斯坦1936年又关于此问题发表了一篇正式文章, 其中就有引力透镜的概念了。
图2. 爱因斯坦1912年4月左右记录其关于引力弯曲光线计算的笔记,收录于爱因斯坦文集第3卷585页。
爱因斯坦1911年的文章假设在加速参考框架内和一个具有均匀引力场的参考框架内,物理过程是一样的。引力场中光的速度是位置的函数, 则光的波,根据惠更斯原理(敲黑板,划重点,爱因斯坦这里是作光学计算),会发生偏折。爱因斯坦由此导出结果为 ,其中 Φ 是引力势。这个结果与近似后的索尔德纳结果完全相同。由此计算的太阳对远处恒星光线的偏折是 0".83 (爱因斯坦原文)。
关于基于广义相对论的偏折角计算,爱丁顿爵士在其《相对论的数学原理》第41节有个简洁的表述。计算的出发点是光的性质 ,引力偏折光线此时有了略显正当的理由:“质量弯曲了时空,而光线是时空中的零测地线。”在球形的静止质量体附近,光的轨道方程为 ,由此得到偏角。关于这个问题,还有其它版本的计算(Carroll)。假设物体的引力场是弱场,引力势由泊松方程给出 。该引力势引起时空的微小扰动,有距离公式 。 研究光线偏折要解该空间中的测地线方程,一番近似后得到偏转角为 ,其中 是与路径垂直的方向上的引力势梯度投影。 记瞄准距为 R,有 , 即 。对于太阳来说,Gm/c2=1.47 km, R=697000 km,所以偏角约为 1".75。
如你所见,引力偏折光线所用的理论基础是朝秦暮楚的,(近似)计算过程是颠三倒四的。但是,不管这系数是基于什么样的考量得到的,由简单的量纲分析分析得来的 这样的简单物理却永远是对的。
4
光线偏折的观测
爱丁顿爵士是相对论的拥趸。据说,1919年11月6日当Ludwik Silberstein,一个自认也是相对论专家的人,问他是不是说过他是世界上真正懂得相对论的三人之一时,爱丁顿犹犹豫豫不肯回答。Ludwik Silberstein坚持让爱丁顿回答这个问题,并催促他不必“so shy”嘛, 爱丁顿回答道: “Oh, no! I was wondering who the third one might be (呃,我不是不好意思。我就是在想那第三个会是谁啊)!” 爱丁顿自认懂得相对论是有证据的,其《相对论的数学理论》一书第一版出现在1923年,《关于引力相对论的报告》出版于1918年,仅在广义相对论面世两年之后。爱丁顿这样懂相对论的宇宙学家以后不易见到了。
爱丁顿为了验证光线偏折的理论,参与组织了到非洲西海岸观测1919年5月29日日全食的探险,并拍摄了大量太阳附近天区的照片(图3)。爱丁顿爵士处理了照片得到的结果, 在其《相对论的数学理论》一书第41节,爱丁顿写道根据广义相对论计算太阳附近光的偏折应为 1"75 ,而1919年英国两支探险队得到的结果分别为 和 。呵呵,理论和实验 fit very well (符合得很好)的感觉有没有啊?一时间,英国人民,还有欧洲大陆和美洲大陆的人们,都在欢呼爱因斯坦广义相对论的伟大胜利,介绍相对论的文章铺天盖地。
图3. 爱丁顿爵士获得的1919年日全食的照片之一
5
光线真的会弯曲吗?
所谓引力场弯折光线的说法可能也过时了,它反映的是陈旧的概念体系。对于光线偏折的问题,我们还可以有另一种看法,就是重新审视"什么是直的”的这个重大问题。笔者以为,正确的观念是光线永不弯曲,光走的路径才是直线。就算按照经典力学的理解,光线走光程为极值(按说该是最短)的路径,这就是直线的定义(图4)!如果我们接受费马定理以及物理空间遵循黎曼几何这样的观念,我们就应该习惯光走的路径才是直线的观念。以笔者的理解,非极性标量的最小值是0。光程就是非极性标量,取最小值意味着 ,这就是时空中直线的定义。笔者甚至认为应该进一步地理解为,光的世界是平直的时空。
图4. 光路永不弯折,只是在非均匀空间中的光路给了你光路弯折的误解
6
多余的话
引力场偏折光线的验证,首重的是光线到底是否被重力偏折了。只要这偏折足够大,且能够排除其它因素(远处恒星的光在路上遭遇了什么,不是容易弄清楚的),就足够了。至于 中的比例因子α 是2还是4倒在其次了。这就像海王星的发现,验证了基于经典力学对天王星不规则轨道的诠释,至于预言的海王星的质量及其轨道有多么(不)精确,那有什么打紧。至于说到测量结果接近 α=4 时的计算值是验证了爱因斯坦引力理论对牛顿引力理论的胜利,持这种观点的人显然是太多情了些,爱因斯坦1911年基于相对论等价原理的结果(尽管不是基于1915年成型的广义相对论),那里也是 α=2 ,与牛顿力学何干?再说了,广义相对论场方程是非线性方程,偏折角的公式是近似计算而来的结果,测量数值符合得 very well 就有点儿令人起疑了。至于爱丁顿给出的1919年测量值,一直以来饱受争议。据说因为争议太大,1979年英国又组织人重新分析数据,结论是爱丁顿的数据处理是合理的。对此,我的评论是 “没有评论”。1919年的实验条件,类似图3那样质量的照片,要是测量准了那才叫见鬼呢!
有评论认为,“The measurements are difficult, and the results were not accurate enough to decide which theory was right(测量很难,结果也不够准确到能判断哪个理论是对的)”,这是中肯之论。但是,1919年是第一次世界大战后的第一年,英国的科学家竟然去验证德国科学家的理论(Soldner和Einstein都是德国佬), 这是多么啊那个什么的事情啊。观测精确验证了理论,是多么值得欢呼啊!
据说爱因斯坦的理论后来被射电天文学给证实了。 有人又提出了这样的疑问:“如果望远镜的精度是由 决定的,为啥射电望远镜会比光学望远镜能更精确地测定光线的偏折呢,两者的波长可是差七八个数量级的啊? 关于这个问题,笔者没花时间研究过,或许有专业的解释吧。
我从来不怀疑物理学家的人品,我怀疑物理学和大自然!
本文改编自曹则贤著《惊艳一击-数理史上的绝妙证明》(外语教学与研究出版社,2019)。…