再之后更精确的遥感光谱观测,也只在这一带的两个撞击地貌——薛定谔盆地和塞曼撞击坑中发现过富橄榄石的区域——但这两个地方都位于南极-艾特坑盆地的外围。
日本的月亮女神号探测器在红色正方形标记的地方明确发现了富橄榄石的光谱信号。来源:[6]
来自中国的月球车玉兔二号携带红外成像光谱仪(VNIS),在第1个月昼里对沿途的两处探测点(CE4_0015和CE4_0016)的土壤进行了光谱探测。
玉兔二号第一个月昼的巡视轨迹(左)和两处开展了光谱成分探测的区域(右)。来源:[1]
这两个探测点的光谱数据表明:嫦娥四号着陆区第1个月昼里获取的光谱数据,与位于雨海中的嫦娥三号着陆区光谱明显不同。
(1)嫦娥四号探测区的反射光谱图中吸收峰较弱,光谱线斜率也更大(也就是所谓的“光谱偏红”),表明嫦娥四号着陆区比嫦娥三号着陆区表面受到了更强的空间风化作用。
嫦娥四号0015和0016号探测点的反射光谱数据和嫦娥三号0008号探测点的对比。如果看不懂的话,知道嫦娥四号的光谱线斜率更大就可以了~来源:[1]
(2)嫦娥四号着陆区矿物的光谱吸收特征显示着陆区一带的镁铁质组分中可能含有显著的低钙辉石(LCP)和橄榄石(OL)成分,而月海玄武岩典型的组分单斜辉石(Cpx,或者叫高钙辉石HCP)的相对含量却不高。
归一化处理之后的反射率趋势可以明显看到1微米和2微米处镁铁质组分特征性的吸收峰,其拟合结果与低钙辉石和橄榄石为主的混合成分吻合。来源:[1]
橄榄石从何处来?
这些橄榄石是从哪里来的?反推起来其实也没那么容易。
要知道,虽然嫦娥四号着陆于南极-艾特肯盆地中,但出于着陆安全的考虑,具体的着陆区却位于冯·卡门撞击坑中一片平坦的玄武岩覆盖区域,也就是说,这里的镁铁质组分里似乎应当以高钙辉石(HCP)为主才对。
作者给出的解释是:它们来自位于冯·卡门撞击坑东北方向,芬森撞击坑的溅射物。
也就是说,很久之前,一颗小行星撞击月球表面形成芬森撞击坑的同时,挖掘和溅射出来的物质辐射状飞溅开来,飞到了冯·卡门撞击坑内原本被玄武岩覆盖的区域之上。事实上,不管在可见光影像还是光谱数据中,都可以在嫦娥四号着陆区一带,看到与玄武岩背景明显不同的来自芬森撞击坑的溅射物。
右图这个亮线,就是来自芬森撞击坑的溅射物的颜色。浅蓝色区域标注的范围是玄武岩覆盖区域。底图数据来自CE-2 DOM
总之,嫦娥四号着陆区一带不仅仅有原本的玄武岩,还有来自芬森撞击坑的镁铁质物质。
那来自芬森撞击坑里,富低钙辉石和橄榄石的物质又是哪里来的呢?
作者给出的一种可能性是:来自南极-艾特肯盆地一带的上月幔。也就是说,可能是一颗很大的小行星撞击月球表面带来月球深部物质。总之,这些物质可能原本来自上月幔,最终经由芬森撞击坑的挖掘抛射过程飞到了嫦娥四号着陆区一带。如果是这样的话,很可能上月幔也会含有大量的低钙辉石和橄榄石成分。
不过,这并不是唯一的可能性,作者也给出了另一种可能性,那就是这些低钙辉石和橄榄石也有可能并不是来自上月幔原本的“原生矿物”,而是在后来撞击产生的熔融物质中分异结晶出来的产物[8]。
步履不停
一转眼五个多月过去了,嫦娥四号和玉兔二号已经顺利完成了5个月昼的科学观测,获得了丰硕的科学成果。而这篇论文,才仅仅是第一个月昼里的近红外光谱仪(VNIS)这一个仪器的初步探测结果——还有大量的科学数据等待天文地质学家们去解译和探索。
玉兔二号也不会停下它的脚步。至今一切健康的玉兔二号,还会继续走的更远,看到更多月球背面的风景,也探索更多这片神秘土地的奥秘。
作者名片
参考文献:
[1] Li, C., Liu, D., Liu, B., et al. (2019). Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. https://doi.org/10.1038/s41586-019-1189-0
[2] Shearer, C. K., Hess, P. C., Wieczorek, M. A., Pritchard, M. E., Parmentier, E. M., Borg, L. E., ... & Canup, R. M. (2006). Thermal and magmatic evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60(1), 365-518.
[3] Lucey, P. (2010). Mantle of the Moon exposed?. NatureGeoscience, 3(8), 517.
[4] http://minerva.union.edu/hollochk/moon_rocks/background.html
[5] Wieczorek, M. A., Neumann, G. A., Nimmo, F., Kiefer, W. S., Taylor, G. J., Melosh, H. J., ... &Konopliv, A. S. (2013). The crust of the Moon as seen by GRAIL. Science,339(6120), 671-675.
[6] Yamamoto, S., Nakamura, R., Matsunaga, T., Ogawa, Y., Ishihara, Y., Morota, T.,... & Haruyama, J.(2010). Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nature Geoscience, 3(8), 533.
[7] Melosh, H. J., Kendall, J., Horgan, B., Johnson, B. C., Bowling, T., Lucey, P. G., & Taylor, G. J. (2017). South Pole–Aitken basin ejecta reveal the Moon’s upper mantle. Geology, 45(12), 1063-1066.
[8] Vaughan, W. M., & Head, J. W. (2014). Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations. Planetary and Space Science, 91, 101-106.